• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Hao (Meng, Hao.) | Huo, Ru (Huo, Ru.) | Guo, Qian-Ying (Guo, Qian-Ying.) | Huang, Tao (Huang, Tao.) | Liu, Yun-Jie (Liu, Yun-Jie.)

收录:

EI Scopus PKU CSCD

摘要:

For mobile-edge computing (MEC), a machine learning-based stochastic task offloading algorithm was proposed. By dividing the task into offloadable components and unoffloadable components, the improved Q learning and deep learning algorithm were used to generate the optimal offloading strategy of stochastic task, which minimized the weighted sum of energy consumption and time delay of the mobile devices. The simulation results show that the proposed algorithm saves the weighted sum of energy consumption and time delay by 38.1%, compared to the local execution algorithm. © 2019, Editorial Department of Journal of Beijing University of Posts and Telecommunications. All right reserved.

关键词:

Deep learning Edge computing Energy utilization Green computing Learning algorithms Learning systems Reinforcement learning Stochastic systems Time delay

作者机构:

  • [ 1 ] [Meng, Hao]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Huo, Ru]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Guo, Qian-Ying]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Huang, Tao]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Huang, Tao]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 100876, China
  • [ 6 ] [Liu, Yun-Jie]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Liu, Yun-Jie]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 100876, China

通讯作者信息:

  • [huo, ru]beijing advanced innovation center for future internet technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Posts and Telecommunications

ISSN: 1007-5321

年份: 2019

期: 2

卷: 42

页码: 25-30

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:156/3610935
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司