• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Guijuan (Zhang, Guijuan.) | Liu, Yang (Liu, Yang.) | Jin, Xiaoning (Jin, Xiaoning.)

收录:

EI Scopus SCIE CSCD

摘要:

In the past decade, recommender systems have been widely used to provide users with personalized products and services. However, most traditional recommender systems are still facing a challenge in dealing with the huge volume, complexity, and dynamics of information. To tackle this challenge, many studies have been conducted to improve recommender system by integrating deep learning techniques. As an unsupervised deep learning method, autoencoder has been widely used for its excellent performance in data dimensionality reduction, feature extraction, and data reconstruction. Meanwhile, recent researches have shown the high efficiency of autoencoder in information retrieval and recommendation tasks. Applying autoencoder on recommender systems would improve the quality of recommendations due to its better understanding of users' demands and characteristics of items. This paper reviews the recent researches on autoencoder-based recommender systems. The differences between autoencoder-based recommender systems and traditional recommender systems are presented in this paper. At last, some potential research directions of autoencoder-based recommender systems are discussed.

关键词:

recommender system data mining deep learning autoencoder

作者机构:

  • [ 1 ] [Zhang, Guijuan]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Yang]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Jin, Xiaoning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jin, Xiaoning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

FRONTIERS OF COMPUTER SCIENCE

ISSN: 2095-2228

年份: 2020

期: 2

卷: 14

页码: 430-450

4 . 2 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 88

SCOPUS被引频次: 92

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:89/3911081
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司