• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Xi (Meng, Xi.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂)

收录:

EI Scopus PKU CSCD

摘要:

With the goal to realize the real-time measurement of key water quality parameters in wastewater treatment process, this paper constructs a novel soft-measurement model based on the brain-like modular neural network (BLMNN). First, based on the mutation information and expert knowledge, the easy-to-measure variables which have strong correlations to the effluent water quality parameters are chosen as the model inputs. Then, simulating the modular structure of brain cortex, the effluent water parameters are measured by different sub-models, improving both the modeling accuracy and modeling speed. The simulation results based on real data verify the accuracy and effectiveness of the proposed method. Copyright © 2019 Acta Automatica Sinica. All rights reserved.

关键词:

Parameter estimation Effluent treatment Reclamation Water quality Neural networks Effluents Wastewater treatment

作者机构:

  • [ 1 ] [Meng, Xi]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Meng, Xi]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Qiao, Jun-Fei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Han, Hong-Gui]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Han, Hong-Gui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • 乔俊飞

    [qiao, jun-fei]faculty of information technology, beijing university of technology, beijing; 100124, china;;[qiao, jun-fei]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2019

期: 5

卷: 45

页码: 906-919

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2861/4272900
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司