• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shan, Jichao (Shan, Jichao.) | Li, Xiuzhi (Li, Xiuzhi.) | Zhang, Xiangyin (Zhang, Xiangyin.) | Jia, Songmin (Jia, Songmin.) (学者:贾松敏)

收录:

EI Scopus PKU CSCD

摘要:

Autonomous mapping for mobile robot is the premise of completing intelligent behavior. To improve the intelligence and intuitive user interaction of robot, maps are needed to achieve the semantics beyond geometry and appearance. This paper studies the 3D semantic map construction method, which fuses the pixel-level image semantic segmentation based on Deep Residual Networks(DRN) and Simultaneous Localization And Mapping(SLAM). Firstly, the combined median filter algorithmis used to restore the depth of the map. The improved Iterator Closest Point (ICP) algorithm is employed to estimate camera pose and loopback detection based on random ferns is proposed for 3D scene reconstruction. Then, the optimized DRN is utilized to achieve more accurate semantic prediction and segmentation. Finally, the predicted semantic classification labels are migrated to the 3D model by Bayesian based incremental transfer strategy to generate a globally consistent 3D semantic map. Experimental results show that the proposed method can build the real-time 3D semantic map in the real and complicated environment. © 2019, Science Press. All right reserved.

关键词:

3D modeling Image segmentation Indoor positioning systems Intelligent robots Mapping Median filters Semantics

作者机构:

  • [ 1 ] [Shan, Jichao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Shan, Jichao]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Li, Xiuzhi]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Li, Xiuzhi]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Zhang, Xiangyin]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Zhang, Xiangyin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 7 ] [Jia, Songmin]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Jia, Songmin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • [shan, jichao]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china;;[shan, jichao]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Chinese Journal of Scientific Instrument

ISSN: 0254-3087

年份: 2019

期: 5

卷: 40

页码: 240-248

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:44/3600851
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司