• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Chao (Fang, Chao.) | Meng, Xiangheng (Meng, Xiangheng.) | Hu, Zhaoming (Hu, Zhaoming.) | Xu, Fangmin (Xu, Fangmin.) | Zeng, Deze (Zeng, Deze.) | Dong, Mianxiong (Dong, Mianxiong.) | Ni, Wei (Ni, Wei.)

收录:

EI Scopus

摘要:

To tackle a challenging energy efficiency problem caused by the growing mobile Internet traffic, this paper proposes a deep reinforcement learning (DRL)-based green content task offloading scheme in cloud-edge-end cooperation networks. Specifically, we formulate the problem as a power minimization model, where requests arriving at a node for the same content can be aggregated in its queue and in-network caching is widely deployed in heterogeneous environments. A novel DRL algorithm is designed to minimize the power consumption by making collaborative caching and task offloading decisions in each slot on the basis of content request information in previous slots and current network state. Numerical results show that our proposed content task offloading model achieves better power efficiency than the existing popular counterparts in cloud-edge-end collaboration networks, and fast converges to the stable state. © 2020 IEEE.

关键词:

Deep learning Energy efficiency Reinforcement learning Green computing

作者机构:

  • [ 1 ] [Fang, Chao]Beijing University of Technology, Faculty of Information Technology, Beijing; 100021, China
  • [ 2 ] [Fang, Chao]Purple Mountain Laboratories, Nanjing; 210001, China
  • [ 3 ] [Meng, Xiangheng]Beijing University of Technology, Faculty of Information Technology, Beijing; 100021, China
  • [ 4 ] [Hu, Zhaoming]Beijing University of Technology, Faculty of Information Technology, Beijing; 100021, China
  • [ 5 ] [Xu, Fangmin]Beijing University of Posts and Telecommunications, School of Information and Communication Engineering, Beijing; 100876, China
  • [ 6 ] [Zeng, Deze]China University of Geosciences, School of Computer Science, Wuhan; 430079, China
  • [ 7 ] [Dong, Mianxiong]Muroran Institute of Technology, Department of Sciences and Informatics, Muroran; 050-8585, Japan
  • [ 8 ] [Ni, Wei]Data61, CSIRO, Marsfield; NSW; 2122, Australia

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE Open Journal of the Computer Society

年份: 2022

卷: 3

页码: 162-171

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:561/4966922
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司