• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xue, Ning (Xue, Ning.) | Huo, Ru (Huo, Ru.) | Zeng, Shi-Qing (Zeng, Shi-Qing.) | Wang, Shuo (Wang, Shuo.) | Huang, Tao (Huang, Tao.)

收录:

EI PKU CSCD

摘要:

In order to improve the task offloading efficiency in multi-access edge computing (MEC), a joint optimization model for task offloading and heterogeneous resource scheduling was proposed, considering the heterogeneous communication resources and computing resources, jointly minimizing the energy consumption of user equipment, task execution delay, and the payment. A deep reinforcement learning method is adopted in the model to obtain the optimal offloading algorithm. Simulations show that the proposed algorithm improves the comprehensive indexes of equipment energy consumption, delay, and payment by 27.6%, compared to the Banker's algorithm. © 2019, Editorial Department of Journal of Beijing University of Posts and Telecommunications. All right reserved.

关键词:

Deep learning Energy utilization Green computing Learning algorithms Learning systems Reinforcement learning

作者机构:

  • [ 1 ] [Xue, Ning]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Huo, Ru]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Huo, Ru]Purple Mountain Laboratories, Nanjing; 211111, China
  • [ 4 ] [Zeng, Shi-Qing]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 100876, China
  • [ 5 ] [Wang, Shuo]Purple Mountain Laboratories, Nanjing; 211111, China
  • [ 6 ] [Wang, Shuo]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 100876, China
  • [ 7 ] [Huang, Tao]Purple Mountain Laboratories, Nanjing; 211111, China
  • [ 8 ] [Huang, Tao]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 100876, China

通讯作者信息:

  • [huo, ru]beijing advanced innovation center for future internet technology, beijing university of technology, beijing; 100124, china;;[huo, ru]purple mountain laboratories, nanjing; 211111, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Posts and Telecommunications

ISSN: 1007-5321

年份: 2019

期: 6

卷: 42

页码: 64-69 and 104

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:180/3611111
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司