收录:
摘要:
To improve fire resistance and thermal insulation performance of composite wall, composite wall of cold-formed steel and tailing microcrystalline foam glass slab (CFS-TS composite wall) was proposed, which was composed of cold-formed steel and tailing microcrystalline foam glass slab (TMFGS). CFS-TS composite wall can fill fly ash blocks between cold-formed steel keels to improve its thermal insulation and mechanical performance. To study the compression performance of CFS-TS composite wall, compressive tests of 4 composite walls were carried out to investigate the influences of the thickness of cold-formed steel, the strength of TMFGS, and the addition of fly ash block on the failure characteristics, bearing capacity, and deformation capacity of specimens. Finite element numerical simulation was conducted to clarify the influence of different parameters on the bearing capacity and failure mode of the composite walls. Simulation results had good agreement with the experimental results. The research shows that CFS-TS composite wall was under axial compression at the early stage of loading and under eccentric compression at the later stage of loading. When the specimen reached the ultimate load, buckling failure occured in the cold-formed steel. The thickness of the cold-formed steel has a great influence on the bearing capacity of the specimen. Increasing the thickness of the cold-formed steel can improve the stability of the specimen. Increasing the strength of the TMFGS can slow down the damage and improve the bearing capacity of the composite wall. When specimen was added with fly ash block, cold-formed steel, TMFGS, and fly ash block had good working performance with each other, and the compressive performance of the specimen was significantly improved. The section form of filling fly ash block is suggested to be used in the engineering application of CFS-TS composite wall. © 2019, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: