• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Xu, Zidong (Xu, Zidong.) | Li, Zheng (Li, Zheng.) | Wang, Pu (Wang, Pu.)

收录:

EI SCIE

摘要:

In this paper, a novel nonlinear method named multiway Laplacian autoencoder (MLAE) is proposed for batch process monitoring. Autoencoder (AE) is an effective unsupervised learning neural network for nonlinear feature extraction. Compared with traditional AEs, the proposed method has two main advantages. Firstly, traditional AEs usually ignore the local structure of the original dataset. The proposed MLAE method integrates graph Laplacian regularization to the loss function, and, thus, the local structure of the normal process data is fully considered. Secondly, the Laplacian matrix of the regularization term is constructed by an average local affinity matrix of all batch runs, which contains the information of the stochastic deviations among batches. Furthermore, two statistics, ie, H-2 and SPE statistics, are developed based on the extracted hidden representation and the retained reconstruction error. The effectiveness and advantages of the MLAE-based monitoring strategy are illustrated by a benchmark penicillin fermentation process and a real E. coli fermentation process.

关键词:

autoencoders batch process multiway Laplacian autoencoders process monitoring

作者机构:

  • [ 1 ] [Gao, Xuejin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Zidong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Zheng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Pu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Gao, Xuejin]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 6 ] [Xu, Zidong]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 7 ] [Li, Zheng]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 8 ] [Wang, Pu]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 9 ] [Gao, Xuejin]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 10 ] [Xu, Zidong]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 11 ] [Li, Zheng]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 12 ] [Wang, Pu]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 13 ] [Gao, Xuejin]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 14 ] [Xu, Zidong]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 15 ] [Li, Zheng]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 16 ] [Wang, Pu]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • 高学金

    [Gao, Xuejin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CANADIAN JOURNAL OF CHEMICAL ENGINEERING

ISSN: 0008-4034

年份: 2020

期: 6

卷: 98

页码: 1269-1279

2 . 1 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:33

JCR分区:3

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:52/3278321
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司