收录:
摘要:
A representative sample of a social network is essential for many internet services that rely on accurate analysis. A good sampling method for social network should be able to generate small sample network with similar structures and distributions as its original network. In this paper, a sampling algorithm based on graph partition, sampling based on graph partition (SGP), is proposed to sample social networks. SGP firstly partitions the original network into several sub-networks, and then samples in each sub-network evenly. This procedure enables SGP to effectively maintain the topological similarity and community structure similarity between the sampled network and its original network. Finally, we evaluate SGP on several well-known datasets. The experimental results show that SGP method outperforms seven state-of-the-art methods. Copyright © 2019 Inderscience Enterprises Ltd.
关键词:
通讯作者信息:
电子邮件地址: