收录:
摘要:
In order to investigate the dynamic performance of a light steel frame structure with micro-crystalline foam plates, a shaking table test of a two-story single-span light steel frame with micro-crystalline foam plates was carried out. Three seismic waves, EL-Centro, Taft, and Zhangjiakou artificial wave, were selected in the test. The intensity of seismic ground motion range from 8 to 9 degrees. The structure vibration performance was analyzed through analyzing the structural natural period, stiffness, floor acceleration, and floor displacement. Suggestions for further engineering application of the structure were given. The experimental results show that under the action of seismic intensity of 9 degree, the internal light steel frame and wallboard skeletons were almost undamaged, except for the partial peeling-off of the wallboard skin and the out-of-plane torsion of some wallboards. The connection mode of the micro-crystalline foam plate and the frame could produce relative dislocation, which could reduce the inter-story displacement of the structure to a certain extent. The X-direction horizontal stiffness of the structure had a large degrade. However, there is no danger of collapse under the action of rare earthquake with seismic intensity of 9 degree, which can meet the seismic resistant requirements for large earthquakes. Flexible materials are needed to add to the reserved joints between adjacent walls to improve the impact and extrusion phenomenon between adjacent walls. © 2019, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: