• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Tianhang (Zhang, Tianhang.) | Wang, Yong (Wang, Yong.)

收录:

EI Scopus

摘要:

With the rapid development of deep learning, UAV target detection technology based on computer vision and artificial intelligence has been widely used in practice. However, due to the instability of UAV movement, limited by load and endurance, the development of UAV target detection is slow, and there are challenges such as significant changes in target scale, occlusion between objects, and changes in target density. This paper builds on the network model structure of YOLOv5 to address these challenges. It adds a detection head generated from low-level feature layers and high-resolution combined feature maps to detect tiny objects. We utilize the Bifpn network structure and a weighted fusion splicing approach to fuse more features and introduce an improved Coordinate Attention to obtain location information for feature enhancement accurately. Extensive experiments on the Visdrone2021 dataset show that the model achieves good results in UAV target detection and is helpful for tiny and occluded target detection. © 2023 SPIE.

关键词:

Deep learning Object detection Unmanned aerial vehicles (UAV) Feature extraction Signal detection Aircraft detection

作者机构:

  • [ 1 ] [Zhang, Tianhang]Beijing University of Technology, Beijing, China
  • [ 2 ] [Wang, Yong]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2023

卷: 12509

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:224/4898209
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司