• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhou, Boxiang (Zhou, Boxiang.) | Wang, Suyu (Wang, Suyu.) | Xiao, Sai (Xiao, Sai.)

收录:

EI Scopus

摘要:

Crowd counting algorithms play an important role in the field of public safety management. Most of the current mainstream crowd counting methods are based on deep convolutional neural networks (CNNs), which use multi-column or multi-scale convolutional structures to obtain contextual information in images to compensate for the impact of perspective distortion on counting results. However, due to the locally connected nature of convolution, this method cannot obtain enough global context, which often leads to misidentification in complex background regions, which affects the accuracy of counting. To solve this problem. First, we design a double recursive sparse self-attention module, which can better obtain long-distance dependency information and improve the problem of background false detection on the basis of reducing the amount of computation and parameters. Secondly, we design a Transformer structure based on feature pyramid as the feature extraction module of the crowd counting algorithm, which effectively improves the algorithm’s ability to extract global information. The experimental results on public datasets show that our proposed algorithm outperforms the current mainstream crowd counting methods, and effectively improves the background false detection problem of complex scene images. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词:

Deep neural networks Image enhancement Convolutional neural networks Convolution Complex networks

作者机构:

  • [ 1 ] [Zhou, Boxiang]Beijing University of Technology, Beijing, China
  • [ 2 ] [Wang, Suyu]Beijing University of Technology, Beijing, China
  • [ 3 ] [Xiao, Sai]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2022

卷: 13534 LNCS

页码: 722-734

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:538/4931071
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司