• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lei, Fei (Lei, Fei.) | Zhang, Xuan (Zhang, Xuan.) | Yang, Yuning (Yang, Yuning.)

收录:

EI Scopus

摘要:

Air pollution is an environmental problem facing mankind today. Therefore, predicting the concentration of air pollutants in advance plays an important role in people's life and government decision-making. In this paper, a multi-channel asymmetric structure prediction model based on temporal convolutional network (TCN) is proposed. As TCN omits some feature information when learning time series features, increasing the number of channels will improve the receptive field of the model, cover longer historical information and extract more time series features. The influence of meteorological factors on the concentration of air pollutants is fully considered in the prediction model, which is used as an auxiliary factor to improve the prediction performance of the model. The concentration of air pollutants collected from the air monitoring station in Fushun City, Liaoning Province, is used as the data set to verify the effectiveness of the model, and the experimental comparison with other prediction models is conducted. The results show that the model proposed in this paper has more accurate prediction accuracy and stronger stability. © 2022 SPIE.

关键词:

Decision making Image processing Learning systems Time series Air pollution Forecasting Remote sensing Deep learning Convolution Behavioral research

作者机构:

  • [ 1 ] [Lei, Fei]Information Department, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhang, Xuan]Information Department, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yang, Yuning]Information Department, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2022

卷: 12287

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:367/4877086
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司