• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Jun-Cheng (Chen, Jun-Cheng.) | Chen, Cong-Xiao (Chen, Cong-Xiao.) | Duan, Li-Juan (Duan, Li-Juan.) | Cai, Zhi (Cai, Zhi.)

收录:

EI Scopus

摘要:

With the development of artificial intelligence, more and more financial practitioners apply deep reinforcement learning to financial trading strategies. However, it is difficult to extract accurate features due to the characteristics of considerable noise, highly non-stationary, and non-linearity of single-scale time series, which makes it hard to obtain high returns. In this paper, we extract a multi-scale feature matrix on multiple time scales of financial time series, according to the classic financial theory-Chan Theory, and put forward to an approach of multi-scale stroke deep deterministic policy gradient reinforcement learning model (MSSDDPG) to search for the optimal trading strategy. We carried out experiments on the datasets of the Dow Jones, S&P 500 of U.S. stocks, and China's CSI 300 SSE Composite, evaluate the performance of our approach compared with turtle trading strategy, Deep Q-learning (DQN) reinforcement learning strategy, and deep deterministic policy gradient (DDPG) reinforcement learning strategy. The result shows that our approach gets the best performance in China CSI 300 SSE Composite, and get an outstanding result in Dow Jones, S&P 500 of U.S. © 2022 ACM.

关键词:

Learning systems Time series Financial markets Deep learning Reinforcement learning Commerce

作者机构:

  • [ 1 ] [Chen, Jun-Cheng]Faculty of Information Technology, Beijing University of Technology, China
  • [ 2 ] [Chen, Cong-Xiao]Faculty of Information Technology, Beijing University of Technology, China
  • [ 3 ] [Duan, Li-Juan]Faculty of Information Technology, Beijing University of Technology, China
  • [ 4 ] [Cai, Zhi]Faculty of Information Technology, Beijing University of Technology, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2022

页码: 22-27

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:519/4982863
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司