• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Wei (Liu, Wei.) | Song, Jingru (Song, Jingru.) | Wang, Zhuozheng (Wang, Zhuozheng.) | Cheng, Haonan (Cheng, Haonan.)

收录:

EI Scopus

摘要:

In recent years, the incidence of depression is increasing year by year, and depression lasts too long after the onset of the disease, which seriously hinders people's normal working life. In this study, based on the characteristics of scalp EEG signals, we compared the classification performance of Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network (CNN), and Long Short-Term Memory Network (LSTM) classification models for depression by using 16 channels of clean EEG data, and the accuracy of the model using the combination of CNN and LSTM was improved about 9.21%, which confirms that the use of LSTM to help process EEG signals and improve classification is real and effective, and the effect of model parameters on model performance is discussed at the end of the paper to adjust model parameters and algorithms to improve the performance of classification. © 2022 IEEE.

关键词:

Support vector machines Biomedical signal processing Brain Long short-term memory Convolution Convolutional neural networks

作者机构:

  • [ 1 ] [Liu, Wei]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Song, Jingru]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Wang, Zhuozheng]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 4 ] [Cheng, Haonan]Beijing University of Technology, Faculty of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2022

页码: 125-130

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:274/4897491
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司