• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Na, Weicong (Na, Weicong.) | Liu, Wenxu (Liu, Wenxu.) | Liu, Ke (Liu, Ke.) | Zhang, Wanrong (Zhang, Wanrong.) | Xie, Hongyun (Xie, Hongyun.) | Jin, Dongyue (Jin, Dongyue.)

收录:

EI Scopus

摘要:

For electromagnetic (EM) optimization of microwave components, with a bad computational starting point, local optimization can easily fall into local optima that cannot satisfy design specifications. In this case, global optimization methods can be utilized. However, global optimization methods are usually time-consuming because of its relatively low convergence rate. In this paper, an efficient EM optimization method combining Bayesian optimization (BO) and parallel local sampling method is presented to solve this problem. In each optimization iteration, the presented method utilizes both the predicted optimal solution and several local samples in an adaptive range around it to construct the surrogate model which is used to guide the optimization process. In this way, the presented method keeps a good balance of exploration and exploitation during optimization. Compared to existing BO which only utilizes the predicted optimal solution, the presented BO effectively reduces the number of optimization iterations, thus increasing the convergence ability of optimization. An example of a microwave filter optimization is presented to illustrate the presented method. © 2022 IEEE.

关键词:

Iterative methods Microwave filters Global optimization Computational electromagnetics Optimal systems

作者机构:

  • [ 1 ] [Na, Weicong]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 2 ] [Liu, Wenxu]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 3 ] [Liu, Ke]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 4 ] [Zhang, Wanrong]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 5 ] [Xie, Hongyun]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 6 ] [Jin, Dongyue]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2022

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:624/4949213
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司