• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Hewei (Wang, Hewei.) | Zhu, Bolun (Zhu, Bolun.) | Li, Yijie (Li, Yijie.) | Gong, Kaiwen (Gong, Kaiwen.) | Wen, Ziyuan (Wen, Ziyuan.) | Wang, Shaofan (Wang, Shaofan.) | Dev, Soumyabrata (Dev, Soumyabrata.)

收录:

EI Scopus

摘要:

In this paper, we propose SYGNet to strengthen the scene parsing ability of autonomous driving under complicated road conditions. The SYGNet includes feature extraction component and SVD-YOLO GhostNet component. The SVD-YOLO GhostNet component combines Singular Value Decomposition (SVD), You Only Look Once (YOLO) and GhostNet. In the feature extraction component, we propose an algorithm based on VoxelNet to extract point cloud features and image features. In SVD-YOLO GhostNet component, the image data is decomposed by SVD, and we obtain data with stronger spatial and environmental characteristics. YOLOv3 is used to obtain the future map, then convert to GhostNet, which is used to realize the real-time scene parsing. We use KITTI data set to perform our experiments and the results show that the SYGNet is more robust and can further enhance the accuracy of real-time driving scene parsing. The model code, data set, and results of the experiments in this paper are available at: https://github.com/WangHewei16/SYGNetfor-Real-time-Driving-Scene-Parsing. © 2022 IEEE.

关键词:

Intelligent systems Autonomous vehicles Intelligent vehicle highway systems Feature extraction Singular value decomposition Extraction

作者机构:

  • [ 1 ] [Wang, Hewei]Beijing-Dublin International College, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhu, Bolun]Beijing-Dublin International College, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Li, Yijie]Beijing-Dublin International College, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Gong, Kaiwen]Beijing-Dublin International College, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Wen, Ziyuan]Beijing-Dublin International College, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Wang, Shaofan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Dev, Soumyabrata]The ADAPT SFI Research Centre, Dublin; D04V1W8, Ireland
  • [ 8 ] [Dev, Soumyabrata]School of Computer Science, University College Dublin, Dublin; D04V1W8, Ireland

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1522-4880

年份: 2022

页码: 2701-2705

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:469/4957607
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司