• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Pengjing (Zhao, Pengjing.) | Yang, Yo-Lun (Yang, Yo-Lun.) | Gao, Peng (Gao, Peng.) | Jiao, Jingpin (Jiao, Jingpin.)

收录:

EI Scopus

摘要:

In order to accurately predict and reduce the possible defects in the stamping process of an aluminum alloy sheet, the simulation data of the sheet thickness for the 6016 aluminum alloy in the stamping process were obtained by the Hill'48 yield criterion based on finite element ABAQUS/Explicit solver. Taking blank holder force, friction coefficient, stamping speed, and die clearance as input parameters, the radial basis function (RBF) network model for predicting the maximum thinning rate of the stamping aluminum alloy sheet was established. The results show that the RBF network model constructed in this paper has high precision and can reflect the complex relationship between the stamping process parameters and the maximum thinning rate well by comparing the finite element simulation and neural network prediction results. It is of great significance to improve the optimization efficiency of the stamping process of the aluminum alloy sheet and reduce the actual experimental cost. © Published under licence by IOP Publishing Ltd.

关键词:

Stamping Finite element method Friction ABAQUS Radial basis function networks Aluminum alloys Forecasting

作者机构:

  • [ 1 ] [Zhao, Pengjing]Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yang, Yo-Lun]Department of Mechanical Engineering, National Taipei University of Technology, Taipei; 106344, Taiwan
  • [ 3 ] [Gao, Peng]Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Jiao, Jingpin]Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1742-6588

年份: 2022

期: 1

卷: 2396

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:432/4968094
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司