• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Ting (Liu, Ting.) | Bao, Changchun (Bao, Changchun.) | Zhou, Jing (Zhou, Jing.) | Tan, Fengqi (Tan, Fengqi.)

收录:

EI Scopus

摘要:

In the far-field scene with noise and reverberation, the integrated sidelobe cancellation and linear prediction (ISCLP) method can simultaneously implement spatial filtering and deconvolution to effectively suppress additive noise and reverberation, but it has high complexity for calculating power spectral density (PSD). In order to reduce this complexity, the power-based PSD estimation method instead of the generalized eigenvalue decomposition (GEVD) is proposed in this paper to obtain eigenvalues and eigenvectors used for calculating PSD. Computational complexity is reduced to M times as compared with the GEVD by combining power-based method with Wielandt's deflation which is used to solve the eigenvalues and the corresponding eigenvectors of correlation matrix of the observed signals. Experimental results show that the performance of dereverberation and noise reduction of the proposed method decreases slightly as compared with the GEVD-based ISCLP method. © 2022 IEEE.

关键词:

Additive noise Eigenvalues and eigenfunctions Reverberation Power spectral density

作者机构:

  • [ 1 ] [Liu, Ting]Beijing University of Technology, Speech and Audio Signal Processing Laboratory, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Bao, Changchun]Beijing University of Technology, Speech and Audio Signal Processing Laboratory, Faculty of Information Technology, Beijing; 100124, China
  • [ 3 ] [Zhou, Jing]Beijing University of Technology, Speech and Audio Signal Processing Laboratory, Faculty of Information Technology, Beijing; 100124, China
  • [ 4 ] [Tan, Fengqi]Beijing University of Technology, Speech and Audio Signal Processing Laboratory, Faculty of Information Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2022

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:568/4956071
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司