• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guan, Yu (Guan, Yu.) | Wen, Pengceng (Wen, Pengceng.) | Li, Jianqiang (Li, Jianqiang.) | Ma, Zhilong (Ma, Zhilong.)

收录:

EI Scopus

摘要:

Ureteropelvic Junction Obstruction (UPJO) is a common hydronephrosis disease in children that can result in even progressive loss of renal function. Ultrasonography as a preliminary diagnostic step for UPJO has the nature of economical, radiationless, noninvasive, and high-noise. Artificial intelligence has been widely applied to medical fields and can greatly assistant for doctors' diagnostic ability. We build and test a DWT-utilized classifier for UPJO diagnosis using ultrasound images. Our diagnosis model is a combination of an attention-based pyramid semantic segmentation network and a discrete wavelet transformation processed residual classification network. We also compare the performance between benchmark models and our models. Our diagnosis model outperformed benchmarks on classification task with accuracy=91.77%. This model can automatically grade the severity of UPJO by ultrasound images, assistant for doctors' diagnostic ability, and relieve patients' burden. © 2022 IEEE.

关键词:

Image classification Computer vision Machine learning Medical imaging Semantics Medical information systems Learning systems Medical computing Signal reconstruction Data mining Semantic Segmentation Data handling Classification (of information) Benchmarking Discrete wavelet transforms Computer aided diagnosis Ultrasonics

作者机构:

  • [ 1 ] [Guan, Yu]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Wen, Pengceng]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Li, Jianqiang]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 4 ] [Ma, Zhilong]School of Information Management, Xinjiang University of Finance and Economy, Xinjiang, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2022

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:447/4952597
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司