• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Dingyuan (Chen, Dingyuan.) | Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus

摘要:

Wastewater treatment process (WWTP) is a complex industrial process with strong nonlinear and time-varying dynamic characteristics. Dissolved oxygen (DO) concentration is a main factor limiting the effluent quality. Due to the complex biochemical reactions, designing an effective controller for this kind of process is a huge challenge. To achieve efficacious control under actuator saturation, a self-organizing fuzzy neural network adaptive tracking control method is proposed. Firstly, a structured model of actuator saturation is employed to ensure the prescribed steady-state and transient tracking performance. Secondly, the self-organizing fuzzy neural network is used to identify the unknown dynamics in WWTP. Then, the structure learning algorithm with correlation entropy is used to adjust the structure online. Thirdly, the stability of the control strategy is analyzed and the corresponding stability conditions are given. Finally, the simulation results on benchmark simulation model 1 (BSM 1) verify the effectiveness of the control method. © 2022 IEEE.

关键词:

Wastewater treatment Fuzzy neural networks Dissolved oxygen Actuators Fuzzy inference Process control Adaptive control systems Effluents Complex networks

作者机构:

  • [ 1 ] [Chen, Dingyuan]Faculty of Information Technology, Beijing Laboratory for Intelligent Environmental Protection, Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yang, Cuili]Faculty of Information Technology, Beijing Laboratory for Intelligent Environmental Protection, Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Qiao, Junfei]Faculty of Information Technology, Beijing Laboratory for Intelligent Environmental Protection, Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2022

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:276/4911169
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司