• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Haitao (Yuan, Haitao.) | Hu, Qinglong (Hu, Qinglong.) | Bi, Jing (Bi, Jing.)

收录:

EI Scopus

摘要:

Cloud-edge hybrid systems can support delay-sensitive applications of industrial Internet of Things. Edge nodes (ENs) as service providers, provide users computing/network services in a pay-as-you-go manner, and they also suffer from the high cost brought by providing computing resources. Thus, the problem of profit maximization is highly important to ENs. However, with the development of 5G network technologies, a large number of mobile devices (MDs) are connected to ENs, making the above-mentioned problem a high-dimensional challenge, which is highly difficult to solve. This work formulates a joint optimization problem of task offloading, task partitioning, and associations of large-scale users to ENs to maximize the profit of ENs. This work focuses on applications that can be split into multiple subtasks, each of which can be completed in MDs, ENs and a cloud data center. Specifically, a mixed integer nonlinear program is formulated to maximize ENs' profit. Then, a novel hybrid algorithm named Genetic Simulated-annealing-based Particle swarm optimizer with a Stacked Autoencoder (GSPSA) is designed to solve it. Real-life data-based experimental results demonstrate that compared with other peer algorithms, GSPSA increases the profit of ENs while strictly meeting latency needs of users' tasks. The dimension of the problem that can be solved is increased by more than 50% with GSPSA. © 2022 IEEE.

关键词:

Hybrid systems Particle swarm optimization (PSO) Simulated annealing Integer programming Learning systems Fluorine compounds computation offloading Profitability 5G mobile communication systems Nonlinear programming Mobile edge computing Delay-sensitive applications

作者机构:

  • [ 1 ] [Yuan, Haitao]Beihang University, School of Automation Science and Electrical Engineering, Beijing; 100191, China
  • [ 2 ] [Hu, Qinglong]Beihang University, School of Automation Science and Electrical Engineering, Beijing; 100191, China
  • [ 3 ] [Bi, Jing]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1062-922X

年份: 2022

卷: 2022-October

页码: 1121-1126

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:260/4853102
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司