• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Guan, Ziyue (Guan, Ziyue.) | Yuan, Haitao (Yuan, Haitao.)

收录:

EI Scopus

摘要:

Accurately identifying network intrusion cannot only help individuals and enterprises better deal with network security problems, but also maintain the Internet environment. Currently, classification methods with autoencoders for feature learning have been proved to be suitable for the network intrusion detection. This work proposes a new hybrid classification method named SABD for network intrusion detection. SABD integrates Stacked sparse contractive autoencoders, Attention-based Bidirectional long-term and short-term memory (LSTM), and Decision fusion. SABD integrates the feature extraction of stacked sparse contractive autoencoders with the classification ability of attention-based bidirectional LSTM. Specifically, stacked sparse contractive autoencoders are used for extracting features, which are sent to the attention-based bidirectional LSTM for the classification. Finally, the decision fusion algorithm is adopted to integrate classification results of multiple classifiers and yield the final results. Experimental results based on real-life UNSW-NB15 data demonstrate that the proposed SABD outperforms its state-of-the-art peers in terms of classification accuracy. © 2022 IEEE.

关键词:

Network security Extraction Feature extraction Brain Long short-term memory Learning systems Intrusion detection

作者机构:

  • [ 1 ] [Bi, Jing]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Guan, Ziyue]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 3 ] [Yuan, Haitao]Beihang University, School of Automation Science and Electrical Engineering, Beijing; 100191, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1062-922X

年份: 2022

卷: 2022-October

页码: 6-11

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:533/4932290
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司