• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Wang, Zichao (Wang, Zichao.) | Yuan, Haitao (Yuan, Haitao.) | Ni, Kun (Ni, Kun.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus

摘要:

The water quality data has missing values and lacks integrity because water environment monitoring equipments are easily damaged by environmental influences, thereby affecting the analysis accuracy of downstream tasks. Traditional data imputation methods include mea/Mast filling, K-nearest neighbor, matrix factorization, Lahrangian interpolation, etc., do not consider time dependence or fail to use complex relations among multiple features. Inspired by successful applications of various variants of Generative Adversarial Networks (GANs) on time series data, this work proposes a time series data imputation method called GEDA, which integrates -GAN, an Encoder-Decoder structure, and an Autoregressive network. GEDA adopts GAN to learn the probability distribution of multi-feature time series, and imputes the missing values with the generated data. Then, GEDA combines feature extraction of the encoder-decoder structure, and time dependence capturing of the autoregressive network. Real-life dataset-based experimental results demonstrate GEDA outperforms several state-of-the-art data imputation methods in terms of accuracy. © 2022 IEEE.

关键词:

Network coding Water quality Nearest neighbor search Probability distributions Factorization Decoding Generative adversarial networks Time series

作者机构:

  • [ 1 ] [Bi, Jing]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Zichao]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 3 ] [Yuan, Haitao]Beihang University, School of Automation Science and Electrical Engineering, Beijing; 100191, China
  • [ 4 ] [Ni, Kun]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 5 ] [Qiao, Junfei]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1062-922X

年份: 2022

卷: 2022-October

页码: 2003-2008

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:567/4948836
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司