• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Lei (Zheng, Lei.) | Quan, Pei (Quan, Pei.) | Lei, Minglong (Lei, Minglong.) | Xiao, Yang (Xiao, Yang.) | Niu, Lingfeng (Niu, Lingfeng.)

收录:

EI Scopus

摘要:

Inspired by the huge powerful representation ability of graph neural networks (GNNs), GNNs begin to solve node classification in cross networks. However, current GNNs are designed for single graph, and overlook the distribution shift in cross network which degrades the performance on test nodes. In this paper, we firstly analyze deep cross-network embeddings based on GNNs and illustrate that in cross-network node classification training and test embedding spaces have different distributions. According to domain adaptation and our analysis, we propose a novel framework and loss function, which introduces optimal transport to GNNs and generates transferable embeddings. Extensive experiments in citation networks verify the effectiveness of our method OT-DCNE. © 2022 The Author(s).

关键词:

Graph neural networks Graph theory Graph embeddings Network embeddings

作者机构:

  • [ 1 ] [Zheng, Lei]School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing; 100190, China
  • [ 2 ] [Quan, Pei]School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing; 100190, China
  • [ 3 ] [Lei, Minglong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Xiao, Yang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Niu, Lingfeng]School of Economics and Management, University of Chinese Academy of Sciences, Beijing; 100190, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2022

期: C

卷: 214

页码: 1160-1167

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:433/4859218
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司