收录:
摘要:
Natural organic matter (NOM) with the size approaching to membrane pore size is commonly considered as the crucial component leading to severe pore blocking and superfluous energy consumption. Aquatic metal ions coexisting with this NOM constituent (target NOM) exert a significant influence on membrane filtration performance; however, little work elucidated their interactions and the impacts on nanofiltration (NF). Therefore, we systematically investigated this issue by titrating three environmentally-relevant metal ions (Al3+, Fe3+ and Cu2+) into the target NOM sample obtained by pre-filtering using NF membrane. Fast spectrophotometric techniques were employed to observe the interactive performance. Results suggested that all metal ions at their critical concentrations caused severe flux decline; Cu2+ at a very low concentration of 5 mu M, Al3+ and Fe(3+)at 20 mu M. NF performance recovered when the concentrations were beyond their critical values, and was improved at excessive concentration when flocs formed. Relationship between spectroscopic characteristics and NF performance was particularly addressed. UV-vis spectrum can be expected to be useful and predictive in membrane fouling control when Al3+ or Fe3+ presented. However, fluorescence fingerprint was not likely that effective since fluorescence intensity continuously reduced with the increasing metal ion concentration, attributed to their quenching effect on NOM fluorophores. (C) 2019 Elsevier B.V. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址: