• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Dongjun (Zhu, Dongjun.) | Xia, Shixiong (Xia, Shixiong.) | Zhao, Jiaqi (Zhao, Jiaqi.) | Zhou, Yong (Zhou, Yong.) | Jian, Meng (Jian, Meng.) | Niu, Qiang (Niu, Qiang.) | Yao, Rui (Yao, Rui.) | Chen, Ying (Chen, Ying.)

收录:

EI Scopus SCIE

摘要:

The remote sensing data is difficult to collect and lack of diversity, which extremely limits the performance of object detection on remote sensing images. In this paper, a multi-branch conditional generative adversarial network (MCGAN) is proposed to augment data for object detection in optical remote sensing images, which is the first GANs-based data augmentation framework proposed for this topic. We use MCGAN to generate the diverse objects based on the existing remote sensing datasets. The multi-branch dilated convolution and the classification branch are adopted into MCGAN to help the generator to generate the diverse and high-quality images. Meanwhile, an adaptive samples selection strategy based on the Faster R-CNN is proposed to select the samples for data augmentation from the objects generated by MCGAN, which can ensure the quality of new augmented training sets and improve the diversity of samples. Experiments based on NWPU VHR-10 and DOTA show that the objects generated by MCGAN have the higher quality compared with the objects generated by WGAN and LSGAN. And the mean average precision detected by the state-of-the-art object detection models used in the experiments has the satisfactory improvement after the MCGAN based data augmentation, which indicates that data augmentation by MCGAN can effectively improve the accuracy of remote sensing images object detection. (C) 2019 Elsevier B.V. All rights reserved.

关键词:

Data augmentation Deep learning Generative adversarial network Object detection Remote sensing

作者机构:

  • [ 1 ] [Zhu, Dongjun]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 2 ] [Xia, Shixiong]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 3 ] [Zhao, Jiaqi]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 4 ] [Zhou, Yong]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 5 ] [Niu, Qiang]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 6 ] [Yao, Rui]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 7 ] [Chen, Ying]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 8 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xia, Shixiong]China Univ Min & Technol, Mine Digitizat Engn Res Ctr, Sch Comp Sci & Technol, Minist Educ Peoples Republ China, Xuzhou 221116, Jiangsu, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2020

卷: 381

页码: 40-51

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:34

JCR分区:1

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1413/3638830
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司