• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jie (Zhang, Jie.) (学者:张杰) | Li, Hailing (Li, Hailing.) | Li, Dong (Li, Dong.) (学者:李冬) | Liu, Bo (Liu, Bo.) (学者:刘博) | Li, Shuai (Li, Shuai.) | Cao, Meizhong (Cao, Meizhong.)

收录:

EI Scopus PKU CSCD

摘要:

In order to remove total phosphorus (TP) and organic matter in domestic sewage and achieve partial nitrification, an enhanced biological phosphorus removal granular sludge, which was cultivated with synthetic wastewater at room temperature (17-19), was used as inoculated sludge in this study. The effect of phosphorus removal and nitrosation on domestic sewage was studied. The experiment showed that the phosphorus removal of the granular sludge could be achieved through 27 d cultivation. The TP concentration of effluent could reach less than 1 mg/L and the TP release in anaerobic stage ΔρTP/ρCOD removal in anaerobic stage (ΔρCOD) could reach 0.3. The change of the aeration methods could make RNA increase from 0 to 90% in a short time. The concentration of NO -2-N reached 10 mg/L, and the concentration of TP and COD in the effluent were kept below 0.5 and 50 mg/L, respectively. The particle size decreased from 1 200 μm to 1 000 μm and the value of SVI reduced from 32 mL/g to 29 mL/g. The ratio of protein (PN) to polysaccharide (PS) dropped from 2.0 to 1.2. Although the particle size slightly decreased due to domestic sewage, it remained larger than 1 000 μm and the particles possessed better settleability. Thus, the adoption of high and low gradient aeration can achieve phosphorus removal and nitrosation with the removal rate of TP reaching 95%, RNA reaching over 90%, and the particle performance remaining stable. © 2019, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.

关键词:

Sewage Chemicals removal (water treatment) Sewage aeration Biological water treatment Nitration Phosphorus Effluents Wastewater treatment RNA Granular materials Particle size

作者机构:

  • [ 1 ] [Zhang, Jie]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhang, Jie]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin; 150090, China
  • [ 3 ] [Li, Hailing]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Li, Dong]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Liu, Bo]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Li, Shuai]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin; 150090, China
  • [ 7 ] [Cao, Meizhong]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 李冬

    [li, dong]key laboratory of beijing for water quality science and water environment recovery engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Harbin Institute of Technology

ISSN: 0367-6234

年份: 2019

期: 8

卷: 51

页码: 1-7

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:559/4292740
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司