• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Wang, Longyang (Wang, Longyang.)

收录:

EI Scopus SCIE

摘要:

Aiming at the complexity, nonlinearity and difficulty in modeling of nonlinear system. In this paper, an improved back-propagation(BP) neural network based on restricted boltzmann machine(RBM-IBPNN) is proposed for nonlinear systems modeling. First, the structure of BP neural network(BPNN) is optimized by using sensitivity analysis(SA) and mutual information(MI) of the hidden neurons. Namely when the SA value and the MI value of the hidden neurons satisfy the set standard, the corresponding neurons will be pruned, split or merged. second, the restricted boltzmann machine(RBM) is employed to perform parameters initialization of training on the IBPNN. Finally, the proposed RBM-IBPNN is evaluated on nonlinear system identification, lorenz chaotic time series prediction and the total phosphorus prediction problems. The experimental results demonstrate that the proposed RBM-IBPNN not only has faster convergence speed and higher prediction accuracy, but also realizes a more compact network structure.

关键词:

Mutual information Nonlinear system modeling BP neural network Restricted boltzmann machine Sensitivity analysis

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Longyang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED INTELLIGENCE

ISSN: 0924-669X

年份: 2020

期: 1

卷: 51

页码: 37-50

5 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:90/4304377
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司