• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tian, Yingjie (Tian, Yingjie.) | Zhang, Yuqi (Zhang, Yuqi.) | Zhang, Haibin (Zhang, Haibin.)

收录:

Scopus SCIE

摘要:

In the age of artificial intelligence, the best approach to handling huge amounts of data is a tremendously motivating and hard problem. Among machine learning models, stochastic gradient descent (SGD) is not only simple but also very effective. This study provides a detailed analysis of contemporary state-of-the-art deep learning applications, such as natural language processing (NLP), visual data processing, and voice and audio processing. Following that, this study introduces several versions of SGD and its variant, which are already in the PyTorch optimizer, including SGD, Adagrad, adadelta, RMSprop, Adam, AdamW, and so on. Finally, we propose theoretical conditions under which these methods are applicable and discover that there is still a gap between theoretical conditions under which the algorithms converge and practical applications, and how to bridge this gap is a question for the future.

关键词:

deep learning machine learning stochastic gradient descent

作者机构:

  • [ 1 ] [Tian, Yingjie]Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China
  • [ 2 ] [Tian, Yingjie]Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
  • [ 3 ] [Tian, Yingjie]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
  • [ 4 ] [Zhang, Yuqi]Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
  • [ 5 ] [Zhang, Haibin]Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Tian, Yingjie]Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China;;[Tian, Yingjie]Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China;;[Tian, Yingjie]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

MATHEMATICS

年份: 2023

期: 3

卷: 11

2 . 4 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 124

ESI高被引论文在榜: 8 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:423/4945679
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司