• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jianmin (Li, Jianmin.) | Zeng, Wei (Zeng, Wei.) (学者:曾薇) | Liu, Hong (Liu, Hong.) | Zhan, Mengjia (Zhan, Mengjia.) | Miao, HaoHao (Miao, HaoHao.) | Hao, Xiaojing (Hao, Xiaojing.)

收录:

EI Scopus SCIE

摘要:

Partial nitrification and anammox process is considered to be a good choice for nitrogen removal. Nevertheless, it is difficult to achieve in low ammonia wastewater because of the need to control further oxidation of nitrite. Nitrification combined with Feammox (anaerobic ammonia oxidation coupled to Fe (III) reduction) and NDFO (nitrate/nitrite-dependent Fe (II) oxidation) can achieve autotrophic removal of low ammonia. And sponge iron can avoid the disadvantage of continuously adding iron sources in this process. Therefore, a sponge iron biofilter (SIBF) treating low ammonia wastewater under aeration was explored in this study. The optimal operating conditions for SIBF were hydraulic retention time (HRT) of 9 h and gas-water ratio (R) of 9:1, at which the total inorganic nitrogen removal efficiency was up to 77.2 %, and effluent ammonia and total inorganic nitrogen concentrations were less than 5 mg/L and 15 mg/L, respectively. This met the 1A discharge standard of municipal wastewater in China. Stable ratio isotope results indicated that Feammox, NDFO and Anammox resulted in high nitrogen loss in SIBF. And different nitrogen transformation contribution tests indicated NDFO had the dominant contribution, which accounted for 55.7 %. Besides, the production of N2O was minimum under HRT of 9 h and R of 9:1, in which the N2O emission factor was 0.7 %. Stable isotope tracing analysis showed that 92.8 % of N2O was derived from ammonia and the dominant production pathway was nitrifier denitrification. The results of microbial community showed that the nitrification bacteria-Nitrosomonas, Nitrotoga, Nitrospira, Feammox bacteria-Dechloromonas, NDFO bacteria-Thiobacillus and anammox bacteria-Brocadia played major roles in SIBF. Therefore, SIBF shows superior performance and application potential in autotrophic nitrogen removal from low-ammonia nitrogen wastewater under aeration.

关键词:

Autotrophic nitrogen removal Feammox Sponge iron biofilter Anammox NDFO

作者机构:

  • [ 1 ] [Li, Jianmin]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 2 ] [Zeng, Wei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Hong]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 4 ] [Zhan, Mengjia]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Miao, HaoHao]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [Hao, Xiaojing]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zeng, Wei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMICAL ENGINEERING JOURNAL

ISSN: 1385-8947

年份: 2023

卷: 460

1 5 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:595/4959529
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司