收录:
摘要:
For the first time, this paper investigates the temperature-dependent aerothermoelastic properties of nano-composite pyramidal lattice sandwich beams in supersonic airflow. A nonuniform temperature distribution along the thickness is considered. The face sheets and core of the sandwich beam are fabricated from graphene platelet (GPL)-reinforced nanocomposites. A refined thermo-mechanical equivalent model is established to determine the effective shear modulus of the lattice core subjected to a nonuniform temperature distribution. Then, the core transforms into a continuum layer. Subsequently, the beams with lattice cores were modeled as equivalent sandwich structures composed of three continuum layers. The effective modulus of elasticity of the nano-composites was calculated using the Halpin-Tsai micromechanics model combined with the mixture rule. The aerodynamic pressure was calculated using the first-order supersonic piston theory. The aerothermoelastic properties of the sandwich beam were investigated by analyzing the critical flutter aerodynamic pressure and time-dependent responses of structures. The influences of nonuniform temperature distribution, GPL re-inforcements, and end restrictions on the flutter characteristics of beams are addressed using some parameter examples.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
ISSN: 0955-7997
年份: 2023
卷: 150
页码: 56-69
3 . 3 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:19
归属院系: