• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liang, Yi (Liang, Yi.) | Chen, Kaizhong (Chen, Kaizhong.) | Yi, Lan (Yi, Lan.) | Su, Xing (Su, Xing.) | Jin, Xiaoming (Jin, Xiaoming.)

收录:

EI Scopus SCIE

摘要:

Complex data-parallel job contains task dependency information defined as Directed Acyclic Graph (DAG). For convenience, the DAG presented data-parallel jobs are named as DAG jobs. The prevalence of DAG jobs in modern data centers has made the scheduling oriented job characterization a big challenge. This paper proposes a deep graph-temporal clustering framework, i.e., DeGTeC, to efficiently categorize DAG jobs leveraging the graphic and temporal information in DAGs. The categorization result can then be naturally used to characterize the resource consumption pattern of DAG jobs. The DeGTeC framework is constructed mainly based on two autoencoders, i.e., TaskAE and JobAE. TaskAE and JobAE contain spectral graph convolutional network (GCN) layers, temporal convolutional network (TCN) layers, and the adaptive pooling layers to help build task embeddings and job embeddings. An extra embedding sorting step takes in the sequential order information and the depth-bias information for job clustering. To our best knowledge, DeGTeC is the first solution to do resource consumption characterization of DAG jobs fully leveraging the task dependencies defined in DAG. Experimental results demonstrate that the DeGTeC framework outperforms the state-of-the-art job resource consumption characterization methods.(c) 2022 Elsevier B.V. All rights reserved.

关键词:

Data center Graph convolutional network Clustering Data-parallel job Autoencoder Temporal convolutional network

作者机构:

  • [ 1 ] [Liang, Yi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Kaizhong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Su, Xing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yi, Lan]Yunhe Enmo Beijing Informat Ctr, Beijing 100080, Peoples R China
  • [ 5 ] [Jin, Xiaoming]Zhuoxi Brain & Intelligence Res Inst, Hangzhou 311121, Peoples R China

通讯作者信息:

  • [Yi, Lan]Yunhe Enmo Beijing Informat Ctr, Beijing 100080, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE

ISSN: 0167-739X

年份: 2023

卷: 141

页码: 81-95

7 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:568/4958531
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司