• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Bi, Jing (Bi, Jing.) | Wang, Ziqi (Wang, Ziqi.) | Yuan, Haitao (Yuan, Haitao.) | Zhang, Jia (Zhang, Jia.) | Zhou, MengChu (Zhou, MengChu.)

Indexed by:

EI Scopus SCIE

Abstract:

Evolutionary algorithms and swarm intelligence ones are commonly used to solve many complex optimization problems in different fields. Yet, some of them have limited performance when dealing with high-dimensional complex problems because they often require enormous computational resources to yield desired solutions, and some of them may easily trap into local optima. To solve this problem, this work proposes a Self-adaptive Teaching-learning-based Optimizer with an improved Radial basis function model and a sparse Autoencoder (STORA). In STORA, a Self-adaptive Teaching-Learning-Based Optimizer (STLBO) is designed to dynamically adjust parameters for balancing exploration and exploitation abilities. Then, a sparse autoencoder (SAE) is adopted as a dimension reduction method to compress a search space into a lower-dimensional one for more efficiently guiding a population to converge towards global optima. Besides, an Improved Radial Basis Function model (IRBF) is designed as a surrogate one to balance training time and prediction accuracy. It is adopted to save computational resources for improving overall performance. In addition, a dynamic population allocation strategy is adopted to well integrate SAE and IRBF in STORA. We evaluate STORA by comparing it with several state-of-the-art algorithms through eight benchmark functions. We further test its actual performance by applying it to solve a real-world computation offloading problem.

Keyword:

Autoencoders Teaching-learning-based optimizer Swarm intelligence algorithms Radial basis function model Evolutionary algorithms

Author Community:

  • [ 1 ] [Bi, Jing]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Ziqi]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 4 ] [Zhang, Jia]Southern Methodist Univ, Dept Comp Sci, Lyle Sch Engn, Dallas, TX 75205 USA
  • [ 5 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA

Reprint Author's Address:

  • [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China;;

Show more details

Related Keywords:

Source :

INFORMATION SCIENCES

ISSN: 0020-0255

Year: 2023

Volume: 630

Page: 463-481

8 . 1 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:571/5285013
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.