• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Tong (Liu, Tong.) | Chen, Sheng (Chen, Sheng.) | Li, Kang (Li, Kang.) | Gan, Shaojun (Gan, Shaojun.) | Harris, Chris J. J. (Harris, Chris J. J..)

收录:

EI Scopus SCIE

摘要:

Multioutput regression of nonlinear and nonstationary data is largely understudied in both machine learning and control communities. This article develops an adaptive multioutput gradient radial basis function (MGRBF) tracker for online modeling of multioutput nonlinear and nonstationary processes. Specifically, a compact MGRBF network is first constructed with a new two-step training procedure to produce excellent predictive capacity. To improve its tracking ability in fast time-varying scenarios, an adaptive MGRBF (AMGRBF) tracker is proposed, which updates the MGRBF network structure online by replacing the worst performing node with a new node that automatically encodes the newly emerging system state and acts as a perfect local multioutput predictor for the current system state. Extensive experimental results confirm that the proposed AMGRBF tracker significantly outperforms existing state-of-the-art online multioutput regression methods as well as deep-learning-based models, in terms of adaptive modeling accuracy and online computational complexity.

关键词:

Mathematical models Adaptive systems Predictive models multivariate nonlinear and nonstationary regression Computational modeling Adaptation models Multioutput gradient radial basis function (MGRBF) network two-step training Training online adaptive tracking Data models

作者机构:

  • [ 1 ] [Liu, Tong]Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
  • [ 2 ] [Chen, Sheng]Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, England
  • [ 3 ] [Harris, Chris J. J.]Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, England
  • [ 4 ] [Chen, Sheng]Ocean Univ China, Fac Informat Sci & Engn, Qingdao 266005, Peoples R China
  • [ 5 ] [Li, Kang]Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, England
  • [ 6 ] [Gan, Shaojun]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Gan, Shaojun]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CYBERNETICS

ISSN: 2168-2267

年份: 2023

期: 12

卷: 53

页码: 7906-7919

1 1 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:502/4931757
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司