• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Jian (Tang, Jian.) (学者:汤健) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Liu, Zhuo (Liu, Zhuo.) | Zhou, Xiao-Jie (Zhou, Xiao-Jie.)

收录:

EI Scopus PKU CSCD

摘要:

Load parameters inside ball mill are dif ficulty-to-measure key process variables relative to production quality and quantity of the whole grinding process.There are complex nonlinear mapping relationships between mill load parameters(MLPs)and multi-source mechanical frequency spectral data.Kernel project to latent structure(KPLS)algorithm is suitable to build mill load parameter forecasting(MLPF)model based on such frequency spectral data.Aim to these problems, a new adaptive multi-kernel projection to latent structure selective ensemble(SEN)model for MLPF is proposed.At first, candidate sub-signals'frequency spectral data with different time scales are obtained by using ensemble empirical model decomposition(EEMD)and time/frequency transformation techniques from multi-source mechanical signals.Then, candidate sub-sub-models and SEN-sub-models are constructed based on different frequency spectral data by using KPLS and branch&bound SEN(BBSEN)algorithms.Finally, the candidate sub-signal models are optimal selected from these candidate sub-sub-models and SEN-sub-models;BBSEN is used again to select ensemble sub-signal models from these can didateones and to weight them.Therefore, ch reque MLPF model is constructed.Simulation results of a laboratory-scale ball mill show effectiveness of the proposed approach. © 2019, Editorial Department of Control Theory & Applications South China University of Technology. All right reserved.

关键词:

Ball mills Forecasting Mathematical transformations Metadata Photomapping Scales (weighing instruments)

作者机构:

  • [ 1 ] [Tang, Jian]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Tang, Jian]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Qiao, Jun-Fei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Liu, Zhuo]State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang; Liaoning; 110189, China
  • [ 6 ] [Zhou, Xiao-Jie]State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang; Liaoning; 110189, China

通讯作者信息:

  • 汤健

    [tang, jian]faculty of information technology, beijing university of technology, beijing; 100124, china;;[tang, jian]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Control Theory and Applications

ISSN: 1000-8152

年份: 2019

期: 6

卷: 36

页码: 951-964

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:192/3603351
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司