• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Caixia (Liu, Caixia.) | Kong, Dehui (Kong, Dehui.) (学者:孔德慧) | Wang, Shaofan (Wang, Shaofan.) | Li, Qianxing (Li, Qianxing.) | Li, Jinghua (Li, Jinghua.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

Although prior methods have achieved promising performance for recovering the 3D geometry from a single depth image, they tend to produce incomplete 3D shapes with noise. To this end, we propose Multi-Scale Latent Feature-Aware Network (MLANet) to recover the full 3D voxel grid from a single depth view of an object. MLANet logically represents a 3D voxel grid as visible voxels, occluded voxels and non-object voxels, and aims to the reconstruction of the latter two. Thus MLANet first introduces Multi-Scale Latent Feature-Aware (MLFA) based AutoEncoder (MLFA-AE) and a logical partition module to predict an occluded voxel grid (OccVoxGd) and a non-object voxel grid (NonVoxGd) from the visible voxel grid (VisVoxGd) corresponding to the input. MLANet then introduces MLFA based Generative Adversarial Network (MLFA-GAN) to refine the OccVoxGd and the NonVoxGd, and combines them with the VisVoxGd to generate a target 3D occupancy grid. MLFA shows a strong ability of learning multi-scale fea-tures of an object effectively and can be considered as a plug-and-play component to promote existing networks. The logical partition helps suppress NonVoxGd noise and improve OccVoxGd accuracy under adversarial constraints. Experimental studies on both synthetic and real-world data show that MLANet outperforms the state-of-the-art methods, and especially reconstructs unseen object categories with a higher accuracy.(c) 2023 Elsevier B.V. All rights reserved.

关键词:

Latent space Single depth view Generative adversarial network Autoencoder Attention 3D reconstruction

作者机构:

  • [ 1 ] [Liu, Caixia]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Qianxing]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

通讯作者信息:

  • [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2023

卷: 533

页码: 22-34

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:171/4833438
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司