收录:
摘要:
Large rupture strain (LRS) FRPs have great potential to be used for seismic retrofit of RC columns because of its high rupture strain (i.e., > 5%) that provides better confinement effects. However, in FRP-confined RC columns, the longitudinal reinforcements may buckle before the LRS FRP rupture, especially in the case of large stirrup spacing. This study aims to present a 3D finite element (FE) model for simulating the buckling effect of longitudinal reinforcements in LRS FRP-confined RC columns. A modified concrete damaged plasticity model (CDPM) is proposed to consider the deformation and mechanical characteristics of LRS FRP-confined concrete. Removal of failed concrete elements is considered to facilitate the buckling of longitudinal reinforcements in LRS FRPconfined RC columns. The FE analysis accuracy was verified by comparisons with test results. The factors affecting the buckling of longitudinal reinforcements were discussed through an extensive parametric study. Empirical formulas for the stress and strain values at which the longitudinal reinforcement starts to soften were developed. An empirical formula for the ultimate axial strain of LRS FRP-confined RC columns determined by longitudinal reinforcement buckling was also obtained by regression analysis.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
COMPOSITE STRUCTURES
ISSN: 0263-8223
年份: 2023
卷: 312
6 . 3 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:26
归属院系: