• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Zhen (Yang, Zhen.) (学者:杨震) | Zhou, Ming (Zhou, Ming.) | Yu, Haiyang (Yu, Haiyang.) | Sinnott, Richard O. (Sinnott, Richard O..) | Liu, Huan (Liu, Huan.)

收录:

EI Scopus SCIE

摘要:

Federated learning allows a large number of participants to collaboratively train a global model without sharing participant's local data. Participants train local models with their local data and send gradients to the cloud server for aggregation. Unfortunately, as a third party, the cloud server cannot be fully trusted. Existing research has shown that a compromised cloud server can extract sensitive information of participant's local data from gradients. In addition, it can even forge the aggregation result to corrupt the global model without being detected. Therefore, in a secure federated learning system, both the privacy and aggregation correctness of the uploaded gradients should be guaranteed. In this article, we propose a secure and efficient federated learning scheme with verifiable weighted average aggregation. By adopting the masking technique to encrypt both weighted gradients and data size, our scheme can support the privacy-preserving weighted average aggregation of gradients. Moreover, we design the verifiable aggregation tag and propose an efficient verification method to validate the weighted average aggregation result, which greatly improves the performance of the aggregation verification. Security analysis shows that our scheme is provably secure. Extensive experiments demonstrate the efficiency of our scheme compared with the state-of-the-art approaches.

关键词:

verifiability Hash functions homomorphic hash function Cryptography Training Collaborative work Privacy Federated learning Data models Servers weighted average aggregation

作者机构:

  • [ 1 ] [Yang, Zhen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhou, Ming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yu, Haiyang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Sinnott, Richard O.]Univ Melbourne, Fac Engn & Informat Technol, Sch Comp & Informat Syst, Melbourne, Vic 3040, Australia
  • [ 5 ] [Liu, Huan]Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Ira A Fulton Sch Engn, Tempe, AZ 85281 USA

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

ISSN: 2327-4697

年份: 2023

期: 1

卷: 10

页码: 205-222

6 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:508/5053234
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司