收录:
摘要:
In order to study the aseismic performance of prefabricated light steel frame with light steel truss structure and the seismic failure mechanism of truss-type L-shaped column, full-scale shaking table tests were performed on a two-story building model. Seismic waves in 42 events were input to model structure. The dynamic properties of model structure was quantified by model analysis theories. The change regularity of acceleration responses, displacement responses, and strain responses were analyzed. Results show that with the peak acceleration of seismic waves increasing from 0.07g to 0.9g, both the fundamental frequency and the acceleration magnification factor of the structure decreased gradually. The maximum inter-story drift occurred in the first floor, and the maximum inter-story drift ratios under basis ground motion and rare ground motion of 8-degree was 1/268 and 1/164, respectively, which were lower than the elastic and elastic-plastic inter-story drift ratio limits of multistory steel structure. The model structure can basically satisfy the two-phase and three-level seismic fortification requirements. The truss-type L-shaped column in the model was in elastic state under basis ground motion of 8 degree. Crack was found at the junctions between end column and diagonal member under rare ground motion of 8 degree. At the same time, the L-shaped column enter plastic stage, although the plastic drift increased under rare ground motion of 9 degree and a certain safety margin was remained. The lateral stiffness of L-shaped column degraded severely under very rare ground motion of 9 degree. After the gradual process of plastic deformation, the L-shaped column retained a certain level of carrying capacity, so it has good ductility and can be used in seismic fortification region of high degree. © 2019, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: