• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Meng (Wang, Meng.) | Xiao, Chuang-Bai (Xiao, Chuang-Bai.) | Ning, Zhen-Hu (Ning, Zhen-Hu.) | Yu, Jing (Yu, Jing.) | Zhang, Ya-Hao (Zhang, Ya-Hao.) | Pang, Jin (Pang, Jin.)

收录:

EI Scopus

摘要:

This paper presents a new algorithm based on the theory of mutual information and information geometry. This algorithm places emphasis on adaptive mutual information estimation and maximum likelihood estimation. With the theory of information geometry, we adjust the mutual information along the geodesic line. Finally, we evaluate our proposal using empirical datasets that are dedicated for classification and regression. The results show that our algorithm contributes to a significant improvement over existing methods. © 2019 by the authors.

关键词:

Maximum likelihood estimation Neural networks Classification (of information) Geometry Geodesy

作者机构:

  • [ 1 ] [Wang, Meng]College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Xiao, Chuang-Bai]College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Ning, Zhen-Hu]College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Yu, Jing]College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Zhang, Ya-Hao]State Grid Information and Telecommunication Co.,Ltd., 1401 Main Building No 2 BaiGuang Avenue, Xi Cheng District, Beijing; 100031, China
  • [ 6 ] [Pang, Jin]State Grid Information and Telecommunication Co.,Ltd., 1401 Main Building No 2 BaiGuang Avenue, Xi Cheng District, Beijing; 100031, China

通讯作者信息:

  • [zhang, ya-hao]state grid information and telecommunication co.,ltd., 1401 main building no 2 baiguang avenue, xi cheng district, beijing; 100031, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Algorithms

年份: 2019

期: 5

卷: 12

ESI学科: MATHEMATICS;

ESI高被引阀值:54

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:810/3905189
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司