收录:
摘要:
The gas flow channels inside unitized regenerative fuel cells display obvious effects on relevant parameter changing behaviors such as species concentration, electrical signal and thermal signal during mode switching. In previous study, detailed transportation behaviors inside a cell constructed with streamlined channels have not been investigated. In our present study, a two-dimensional, transient model coupling non-isothermal characteristics is employed to study the changing characteristics of the cell with typical streamlined channel and comparatively analyze the channel structure impacts on the working states inside the operating cell regions. The simulated results indicate that when turning the mode from electrolyzer to fuel cells, the changing response occupied time of each parameter is required more, compared with the stabilizing procedure after entering the electrolytic cell procedure. For different oxygen-side channels, when reducing the channel depth, the current density output is raised, and the needed time-span for the stabilizing the working state is reduced. The present simulation results facilitate better understanding mass transportation behaviors inside unitized regenerative fuel cells when the mode switches from an electrolytic cell to fuel cell.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
INTERNATIONAL JOURNAL OF GREEN ENERGY
ISSN: 1543-5075
年份: 2023
期: 14
卷: 20
页码: 1714-1727
3 . 3 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:19
归属院系: