• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Liuqian (Wang, Liuqian.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Tian, Jimiao (Tian, Jimiao.) | Li, Jiafeng (Li, Jiafeng.) | Zhuo, Li (Zhuo, Li.) | Tian, Qi (Tian, Qi.)

收录:

EI Scopus SCIE

摘要:

With the development of high-resolution remote sensing images (HR-RSIs) and the escalating demand for intelligent analysis, fine-grained recognition of geospatial objects has become a more practical and challenging task. Although deep learning-based object recognition has achieved superior performance, it is inflexible to be directly utilized to the fine-grained object recognition (FGOR) tasks of HR-RSIs under the limitation of the size of geospatial objects. An efficient fine-grained object recognition method in HR-RSIs from knowledge distillation (KL) to filter grafting is proposed. Specifically, fine-grained object recognition consists of two stages: Stage 1 utilizes oriented region convolutional neural network (oriented R-CNN) to accurately locate and preliminarily classify geospatial objects. At the same time, it serves as a teacher network to guide students' effective learning of fine-grained object recognition; in Stage 2, we design a coarse-to-fine object recognition network (CF-ORNet), as the second teacher network, which realizes fine-grained recognition through feature learning and category correction. After that, we propose a lightweight model from knowledge distillation to filter grafting on two teacher networks to achieve efficient fine-grained object recognition. The experimental results on Vehicle Detection in Aerial Imagery (VEDAI) and HR Ship Collection 2016 (HRSC2016) datasets achieve competitive performance.

关键词:

knowledge distillation high-resolution remote sensing image (HR-RSI) Coarse-to-fine object recognition network (CF-ORNet) filter grafting fine-grained object recognition (FGOR)

作者机构:

  • [ 1 ] [Wang, Liuqian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Tian, Jimiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jiafeng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Liuqian]Beijing Key Lab Computat Intelligence & Intelligen, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Jing]Beijing Key Lab Computat Intelligence & Intelligen, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Tian, Jimiao]Beijing Key Lab Computat Intelligence & Intelligen, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Jiafeng]Beijing Key Lab Computat Intelligence & Intelligen, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 10 ] [Zhuo, Li]Beijing Key Lab Computat Intelligence & Intelligen, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 11 ] [Tian, Qi]Huawei Technol, Cloud & AI, Shenzhen 518129, Peoples R China

通讯作者信息:

  • [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

ISSN: 0196-2892

年份: 2023

卷: 61

8 . 2 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:14

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:709/4960877
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司