• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Yuhan (Lin, Yuhan.) | Niu, Lingfeng (Niu, Lingfeng.) | Xiao, Yang (Xiao, Yang.) | Zhou, Ruizhi (Zhou, Ruizhi.)

收录:

EI Scopus SCIE

摘要:

Binary neural networks (BNNs) are promising on resource-constrained devices because they reduce mem-ory consumption and accelerate inference effectively. However, they are still potential on performance improvement. Prior studies attribute performance degradation of BNNs to limited representation ability and gradient mismatch. In this paper, we find that it also results from the mandatory representation of small full-precision auxiliary weights to large values. To tackle with this issue, we propose an approach dubbed as Diluted Binary Neural Network (DBNN). Besides avoiding mandatory representation effectively, the proposed DBNN also alleviates sign flip problem to a large extent. For activations, we jointly min-imize quantization error and maximize information entropy to develop the binarization scheme. Com-pared with existing sparsity-binarization approaches, DBNN trains network from scratch without other procedures and achieves larger sparsity. Experiments on several datasets with various networks demon-strate the superiority of our approach. (c) 2023 Elsevier Ltd. All rights reserved.

关键词:

Model compression Network quantization Binary neural network Sparse regularization Ternary neural network

作者机构:

  • [ 1 ] [Lin, Yuhan]Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
  • [ 2 ] [Lin, Yuhan]Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
  • [ 3 ] [Niu, Lingfeng]Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China
  • [ 4 ] [Xiao, Yang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhou, Ruizhi]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xiao, Yang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION

ISSN: 0031-3203

年份: 2023

卷: 140

8 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:356/4954471
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司