收录:
摘要:
Infrared ship target segmentation is one of the key technologies for automatically detecting ship targets in ocean monitoring. However, it is a challenging work to achieve accurate target segmentation from the infrared ship image. To improve its segmentation performance, we present an Adversarial Domain Adaptation Network (ADANet) for infrared ship target segmentation, where the labeled visible ship images are used as the source domain and the unlabeled infrared ship images are as the target domain. To address the issue of style difference between the two domains, we preprocess the visible images of the source domain in turn with graying and whitening to convert them into the images with the style of the target domain. For the infrared images in the target domain, we optimize them with a denoising network. Furthermore, to solve the matter of limited receptive field of the discriminator, we design a discriminator based on atrous convolution to improve its discriminative ability. Finally, for the issue of low confidence of the target domain predicted images, we add the information entropy of the target domain predicted images to the adversarial loss. Experimental results on the home-made dataset as well as a public dataset show that infrared ship target segmentation achieves higher mean intersection over union than the state-of-the-art methods without significantly increase of parameters, demonstrating its effectiveness.(c) 2023 Elsevier B.V. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
KNOWLEDGE-BASED SYSTEMS
ISSN: 0950-7051
年份: 2023
卷: 265
8 . 8 0 0
JCR@2022
ESI学科: COMPUTER SCIENCE;
ESI高被引阀值:19
归属院系: