• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Lina (Du, Lina.) | Zhuo, Li (Zhuo, Li.) | Li, Jiafeng (Li, Jiafeng.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Li, Xioguang (Li, Xioguang.) | Zhang, Hui (Zhang, Hui.)

收录:

Scopus SCIE

摘要:

DASH (Dynamic Adaptive Streaming over HTTP (HyperText Transfer Protocol)) as a universal unified multimedia streaming standard selects the appropriate video bitrate to improve the user's Quality of Experience (QoE) according to network conditions, client status, etc. Considering that the quantitative expression of the user's QoE is also a difficult point in itself, this paper researched the distortion caused due to video compression, network transmission and other aspects, and then proposes a video QoE metric for dynamic adaptive streaming services. Three-Dimensional Convolutional Neural Networks (3D CNN) and Long Short-Term Memory (LSTM) are used together to extract the deep spatial-temporal features to represent the content characteristics of the video. While accounting for the fluctuation in the quality of a video caused by bitrate switching on the QoE, other factors such as video content characteristics, video quality and video fluency, are combined to form the input feature vector. The ridge regression method is adopted to establish a QoE metric that enables to dynamically describe the relationship between the input feature vector and the value of the Mean Opinion Score (MOS). The experimental results on different datasets demonstrate that the prediction accuracy of the proposed method can achieve superior performance over the state-of-the-art methods, which proves the proposed QoE model can effectively guide the client's bitrate selection in dynamic adaptive streaming media services.

关键词:

deep spatial-temporal representation DASH quality of experience metric mobile video

作者机构:

  • [ 1 ] [Du, Lina]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Xioguang]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Hui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Du, Lina]Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Zhuo, Li]Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Jiafeng]Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 10 ] [Zhang, Jing]Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 11 ] [Li, Xioguang]Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 12 ] [Zhang, Hui]Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China;;[Zhuo, Li]Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED SCIENCES-BASEL

年份: 2020

期: 5

卷: 10

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:255/4514303
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司