• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mao, Shushuai (Mao, Shushuai.) | Lang, Jianlei (Lang, Jianlei.) (学者:郎建垒) | Chen, Tian (Chen, Tian.) | Cheng, Shuiyuan (Cheng, Shuiyuan.) (学者:程水源) | Cui, Jixian (Cui, Jixian.) | Shen, Zeya (Shen, Zeya.) | Hu, Feng (Hu, Feng.)

收录:

EI Scopus SCIE

摘要:

Accurate and rapid predictions of air pollutant dispersion are important for effective emergency responses after sudden air pollution accidents (SAPA). Notably, dispersion parameters (s) are the key variables that influence the simulation accuracy of dispersion models. Empirical dispersion schemes based on power-law formulas are probably appropriate choices for simulations in SAPA because of the requirement for only routine meteorological data. However, performance comparisons of different schemes are lacking. In this study, the performances during simulations of air pollutant dispersion of four typical empirical parameterised schemes, i.e. BRIGGS, SMITH, Pasquill-Gifford, and Chinese National Standard (CNS), were investigated based on the GAUSSIAN plume model with datasets for the classic Prairie Grass experiments, 1956. The performances when simulating peak and overall concentrations in different Pasquill atmospheric stability classes (A, B, C, D, E, F) were quantitatively analysed through different statistical approaches. Results showed that the performances of four schemes for peak and overall concentrations were basically consistent. Scheme CNS in unstable atmospheric conditions (A, B, and C) performed significantly better than the others according to performance criteria, which included the lowest mean of absolute value of fractional biases, lowest normalised mean square errors, and largest mean values of the fraction within a factor of two when predicting peak and overall concentrations, respectively. Schemes BRIGGS and P-G exhibited slightly better performances during the neutral condition (D) followed by scheme CNS. Schemes SMITH and CNS demonstrated slight merits in predicting concentrations compared to the other schemes during stable conditions (E and F). As a whole, scheme CNS generally performed well for the different atmospheric stability classes. These analysis results can help to fill in the data gaps and improve our understanding of the influence of typical power-law function schemes on simulations of air pollutant dispersion. The results are expected to provide scientific support for air pollution predictions, especially during emergency responses to SAPA.

关键词:

Emergency response Sudden air pollution accidents Performance evaluation Statistical analysis Atmospheric stability Empirical power-law dispersion schemes

作者机构:

  • [ 1 ] [Mao, Shushuai]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Tian]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Cheng, Shuiyuan]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Cui, Jixian]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Shen, Zeya]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 7 ] [Hu, Feng]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 8 ] [Cui, Jixian]Guangdong Prov Acad Environm Sci, Guangzhou 510045, Peoples R China

通讯作者信息:

  • 郎建垒

    [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ATMOSPHERIC ENVIRONMENT

ISSN: 1352-2310

年份: 2020

卷: 224

5 . 0 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:99

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:546/4294337
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司