• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Hangyu (Li, Hangyu.) | Xu, Cheng (Xu, Cheng.) | Ma, Nan (Ma, Nan.)

收录:

EI Scopus

摘要:

High-resolution magnetic resonance images can display richer texture details and facilitate doctors' diagnosis of the disease. However, limited by hardware equipment, the resolution of clinical magnetic resonance images is close to the physical limit. Many studies use super-resolution reconstruction to enhance magnetic resonance images, but they ignore the image noise due to voltage fluctuations and patient jitter. Direct super-resolution reconstruction of the image will amplify these noises, and denoising first will blur the image to a certain extent. To address this issue, we propose a denoising-supervised Generative Adversarial Network for super-resolution reconstruction of magnetic resonance images. The generator of the network uses the residual information distillation module to separate the features so that the discriminator can guide it to restore the image. The network contains two discriminators, a sample discriminator and a noise discriminator. The sample discriminator assists the generator to fit the real sample distribution, and the noise discriminator assists the generator to suppress noise. Qualitative and quantitative experiments show that the noise discriminator can effectively suppress the generation of noise in the super-resolution task. Compared with advanced methods on the IXI dataset, the proposed network achieves the highest reconstruction quality (PSNR and SSIM). © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

关键词:

Optical resolving power Image reconstruction Diagnosis Image enhancement Generative adversarial networks Magnetic resonance imaging Textures Distillation Magnetic resonance

作者机构:

  • [ 1 ] [Li, Hangyu]Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China
  • [ 2 ] [Xu, Cheng]Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China
  • [ 3 ] [Ma, Nan]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1876-1100

年份: 2023

卷: 1019 LNEE

页码: 3-11

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:535/4961401
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司