• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Mengran (Li, Mengran.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Li, Xiaoyong (Li, Xiaoyong.) | Zhang, Yuchen (Zhang, Yuchen.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

Graph neural networks (GNNs) have beenwidely used for graph structure learning and achieved excellent performance in tasks such as node classification and link prediction. Real-world graph networks imply complex and various semantic information and are often referred to as heterogeneous information networks (HINs). Previous GNNs have laboriously modeled heterogeneous graph networks with pairwise relations, in which the semantic information representation for learning is incomplete and severely hinders node embedded learning. Therefore, the conventional graph structure cannot satisfy the demand for information discovery in HINs. In this article, we propose an end-to-end hypergraph transformer neural network (HGTN) that exploits the communication abilities between different types of nodes and hyperedges to learn higher-order relations and discover semantic information. Specifically, attention mechanisms weigh the importance of semantic information hidden in original HINs to generate useful meta-paths. Meanwhile, our method develops a multi-scale attention module to aggregate node embeddings in higher-order neighborhoods. We evaluate the proposed model with node classification tasks on six datasets: DBLP, ACM, IBDM, Reuters, STUD-BJUT, and Citeseer. Experiments on a large number of benchmarks show the advantages of HGTN.

关键词:

node classification attention Hypergraph meta-paths transformer

作者机构:

  • [ 1 ] [Li, Mengran]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100021, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100021, Peoples R China
  • [ 3 ] [Li, Xiaoyong]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100021, Peoples R China
  • [ 4 ] [Zhang, Yuchen]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100021, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100021, Peoples R China

通讯作者信息:

  • 张勇

    [Zhang, Yong]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100021, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA

ISSN: 1556-4681

年份: 2023

期: 5

卷: 17

3 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:307/4975375
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司