• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Xinxin (Zhang, Xinxin.) | Zhang, Yin (Zhang, Yin.) | Li, Zhenlei (Li, Zhenlei.) | Wang, Jingfu (Wang, Jingfu.) (学者:王景甫) | Wu, Yuting (Wu, Yuting.) (学者:吴玉庭) | Ma, Chongfang (Ma, Chongfang.)

收录:

EI Scopus SCIE

摘要:

The organic Rankine cycle (ORC) is a popular and promising technology that has been widely studied and adopted in renewable and sustainable energy utilization and low-grade waste heat recovery. The use of zeotropic mixtures in ORC has been attracting more and more attention because of the possibility to match the temperature profile of the heat source by non-isothermal phase change, which reduces the irreversibility in the evaporator and the condenser. The selection of working fluid and expander is strongly interconnected. As a novel expander, a single screw expander was selected and used in this paper for efficient utilization of the wet zeotropic mixtures listed in REFPROP 9.1 in a low-temperature subcritical ORC system. Five indicators, namely net work, thermal efficiency, heat exchange load of condenser, temperature glide in evaporator, and temperature glide in condenser, were used to analyze the performance of an ORC system with wet and isentropic zeotropic mixtures as working fluids. The calculation and analysis results indicate that R441A with an expander outlet temperature of 320 K may be the suitable zeotropic mixture used for both open and close type heat source. R436B may be selected with an expander outlet temperature of 315 K. R432A may be selected with an expander outlet temperature from 295 K to 310 K.

关键词:

single screw expander organic Rankine cycle R436B R432A R441A wet zeotropic mixture

作者机构:

  • [ 1 ] [Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yin]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Zhenlei]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Jingfu]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 6 ] [Ma, Chongfang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 8 ] [Zhang, Yin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Zhenlei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Jingfu]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 11 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 12 ] [Ma, Chongfang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China;;[Zhang, Xinxin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ENERGIES

年份: 2020

期: 5

卷: 13

3 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:876/3898426
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司